Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides.

نویسندگان

  • W L Balderston
  • W J Payne
چکیده

Hydrogen-dependent evolution of methane from salt marsh sediments and whole-cell suspensions of Methanobacterium thermoautotrophicum and Methanobacterium fornicicum ceased or decreased after the introduction of nitrate, nitrite, nitric oxide, or nitrous oxide. Sulfite had a similar effect on methanogenesis in the whole-cell suspensions. In salt marsh sediments, nitrous oxide was the strongest inhibitor, followed by nitric oxide, nitrite, and nitrate in decreasing order of inhibition. In whole-cell suspensions, nitric oxide was the strongest inhibitor, followed by nitrous oxide, nitrite, and nitrate. Consideration of the results from experiments using an indicator of oxidation potential, along with the reversed order of effectiveness of the nitrogen oxides in relation to their degree of reduction ,suggests that the inhibitory effect observed was not due to a redox change. Evidence is also presented that suggests that the decrease in the rate of methane production in the presence of oxides of nitrogen was not attributable to competition for methane-producing substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Populations of methane-producing bacteria and in vitro methanogenesis in salt marsh and estuarine sediments.

Most probable numbers (MPNs) of methanogens in various salt marsh and estuarine sediments were determined with an anaerobic, habitat-simulating culture medium with 80% H(2) plus 20% CO(2) as substrate. Average MPNs for the short Spartina (SS) marsh sediments of Sapelo Island, Ga., were maximal at the 5- to 7-cm depth (1.2 x 10/g of dry sediment). Populations decreased to approximately 880/g of ...

متن کامل

Methanogens rapidly transition from methane production to iron reduction.

Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydro...

متن کامل

The Effect of Nitrogen Enrichment on C1-Cycling Microorganisms and Methane Flux in Salt Marsh Sediments

Methane (CH(4)) flux from ecosystems is driven by C(1)-cycling microorganisms - the methanogens and the methylotrophs. Little is understood about what regulates these communities, complicating predictions about how global change drivers such as nitrogen enrichment will affect methane cycling. Using a nitrogen addition gradient experiment in three Southern California salt marshes, we show that s...

متن کامل

Inhibition of methanogenesis by human bile.

The factors that regulate methanogenesis in humans have not been established. The presence of bile acid, which is lost into the colon from the small intestine, may be an important regulatory factor of methanogenesis. To examine this possibility, the effect of human bile on methane production by faecal cultures, and the in vivo effect of biliary diversion on breath methane excretion in a methano...

متن کامل

Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments.

The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 1976